
Medical Image Segmentation using text enhanced Vision Transformers

Sindhura Kommu
Virginia Tech

sindhura@vt.edu

Sahana Bhaskar
Virginia Tech
sahanab@vt.edu

Jiayue Lin
Virginia Tech

jiayuelin@vt.edu

Abstract

In the context of clinical images, segmentation plays a
pivotal role with a multitude of practical applications. This
project aims to enhance the accuracy and efficiency of med-
ical image segmentation tasks by incorporating domain-
specific language information. While deep learning has
proven invaluable for medical image segmentation, it is of-
ten hindered by the scarcity of high-quality labeled data,
limiting its performance. To address this challenge, we
utilize novel approach that involves training vision trans-
formers for image segmentation while bolstering the model
with complementary medical text annotations. The inclu-
sion of text data not only aids in guiding the generation
of higher-quality pseudo labels in semi-supervised learn-
ing but also leads to an improved fusion of image and text
representations. Our evaluation is conducted using 2 multi-
modal medical segmentation datasets, each consisting of
both images and corresponding text data, encompassing X-
rays and Tissue Samples. Through a series of experiments,
we intend to showcase the findings of our approach and the
performance of our model.

1. Introduction
In the realm of clinical images, segmentation assumes

a crucial role with myriad practical applications. Despite
the transformative impact of deep learning on medical im-
age segmentation, its efficacy is frequently impeded by the
scarcity of meticulously labeled data, thereby constraining
its overall performance. The precise extraction of the in-
tended object remains a formidable challenge, particularly
when dealing with intricately structured target organs char-
acterized by high tissue complexity. Recent investigations
underscore the potential of deep learning as a promising av-
enue for automating medical image segmentation, leverag-
ing the capacity to assimilate and extract the expertise of
professionals through specific deep learning methodologies.

Many existing solutions in the field utilize shared en-
coders, shared decoders, or modality interaction modules
[2]. However, the creation of high-quality medical image

datasets faces inherent challenges that significantly hinder
their application. Obtaining top-tier images is difficult, and
the high cost associated with data annotation compounds
the problem, imposing constraints on the performance en-
hancement of medical image segmentation models. Given
the complexity of improving both the quantity and qual-
ity of medical images, a more practical approach involves
leveraging complementary and readily accessible informa-
tion to compensate for the inherent quality deficiencies in
medical images.

Within this context, Picture Archiving and Communica-
tion Systems (PACS) emerge as pivotal repositories contain-
ing not only medical images but also comprehensive reports
generated by radiologists. These reports serve as the official
documentation of physicians’ interpretations during radio-
logical exams, playing a vital role in conveying findings to
patients and healthcare teams. Furthermore, they furnish ra-
diologists with crucial context regarding prior imaging re-
sults, particularly during the interpretation of follow-up ex-
ams. Radiologists, in reviewing current images, frequently
examine prior images and reports to establish the disease’s
location and extent, facilitating the monitoring of disease
evolution and treatment effectiveness. Despite the time-
consuming nature of reviewing past exams, its undeniable
value in numerous diagnostic applications prompts a shift of
focus toward written medical notes accompanied by medi-
cal images.

In this work, we used LViT model [2], which is inno-
vative in processing images and text to address the chal-
lenge of improving the segmentation performance by us-
ing the existing image-text information. In this model, the
text feature vector is obtained by using a embedding layer
instead of text encoder, which can reduce the number of
parameters in the model. In addition, the hybrid CNN-
Transformer structure can better merge text information and
encode global features with Transformer while retaining the
CNN’s ability to extract local features from images.

Our contributions include the integration of language
cross attention during the reconstruction phase, aligning im-
ages with corresponding texts. A language encoder is in-
troduced to map concepts from language space into med-



ical image space, guiding the segmentation process. Ad-
ditionally, alternative embeddings like BioBERT and Clini-
calBERT capture semantic information in clinical notes, en-
hancing the model’s understanding of complex tissue struc-
tures.

To further bolster segmentation performance, we incor-
porate empirically proven vision augmentation techniques
and enhance the Dice Loss with Focal Loss during train-
ing. The amalgamation of these strategies aims to overcome
the challenges posed by limited data quality and quantity,
demonstrating the potential for significant advancements in
medical image segmentation.

Our experimental validation involves two multimodal
medical image segmentation datasets: QaTa-COV19, com-
prising X-rays, and MoNuSeg, containing tissue samples.
The results showcase notable improvements in segmenta-
tion accuracy, illustrating the efficacy of our approach. The
discussion delves into the implications of our findings, ad-
dressing potential biases and highlighting the broader im-
pact on clinical workflows.

In conclusion, our work represents a comprehensive ef-
fort to enhance medical image segmentation through the fu-
sion of image and text information. By leveraging existing
data sources and innovative deep learning techniques, we
aim to contribute to the ongoing evolution of medical imag-
ing for improved patient outcomes.

2. Related Work
Existing language-vision pretraining models, such as Vi-

sion Transformers (ViTs), have gained popularity in various
computer vision tasks. [1] use ViTs as the image encoder
in a U-Net-style architecture for medical segmentation and
it captures long-range dependencies in images, making it
suitable for the task of image instance segmentation. Other
existing language-vision pretraining models mentioned in
[2] are CLIP (Contrastive Language-Image Pretraining)
and related models, such as ViLT (Vision-Language Trans-
former), VLT (Vision-Language Transformer), and LAVT
(Language-Aware Vision Transformer) are designed for
tasks involving text and image information integration. [3]
mentions several language-vision pretraining models used
in Computer Vision, including CLIP, ALBEF, BLIP, and
others.

The methodology in [5] involves language-aware visual
encoding where language features from a deep language
model are combined with visual features through multiple
Transformer layers. The model employs a pixel-word at-
tention module (PWAM) to align linguistic meanings with
visual cues and a language pathway for controlling the flow
of linguistic information.

In [4] the model combines a U-Net architecture for vi-
sion feature extraction and a pre-trained language model
for text feature extraction. The text embeddings provide

semantic information about disease presence and location,
guiding the U-Net for precise segmentation. The attention-
weighted feature map from this cross-attention process is
used for pixel-level prediction.

3. Approach
3.1. Architecture:

The text-enhanced vision transformer model exhibits
a dual structure, comprising two distinctive U-shaped
branches: a convolutional neural network (CNN) branch
and a transformer branch. It also integrates a CNN-ViT
interaction module designed to harmonize the features ex-
tracted by the Vision Transformer (ViT). Text and Image
Vectors are taken as input by the Down VIT branch. The
ViT merges the features and harmoniously combines them
with CNN features through residual connections, resulting
in a CNN-ViT interaction module. The CNN-ViT inter-
action features are channeled into the UpCNN module to
enable the progressive refinement of information layer by
layer to generate a mask of the image.

3.2. Language Cross Attention

The infusion of language cross attention into the model
necessitates structural adjustments aimed at seamlessly
merging attention mechanisms that capture the intricate in-
terplay between visual and textual information. This har-
monization involves combining attention-weighted visual
features with the original visual features within the model,
specifically executed during the reconstruction stage.

In essence, the text embeddings encapsulate valuable se-
mantic information related to the presence and location of



diseases, acting as a crucial guide for the segmentation pro-
cess. The cross-attention mechanism, operative between the
text embeddings and the decoded feature maps, gives rise
to a pixel-wise attention map. Following this, the attention
map undergoes a normalization process through a Tanh ac-
tivation function, effectively constraining values within the
range of -1 to 1. Subsequently, the normalized pixel-wise
attention map is employed in a pixel-wise multiplication
with the query feature map. The primary objective of this
integration is to augment the model’s ability to discern and
prioritize pertinent features, fostering a more nuanced and
contextually informed approach to image segmentation.

However, the model’s performance post-incorporation
has not met expectations. This could be attributed either to
the implementation approach or the inherent challenge that
cross-attention tends to emphasize global features, which
may not align with the nuanced requirements of medical
images. Medical images often demand a more pronounced
emphasis on local features, and the current global focus
might be a factor contributing to the suboptimal perfor-
mance observed. Further investigation and potential adjust-
ments are warranted to address these challenges and refine
the model for enhanced medical image segmentation.

4. Experiments

4.1. Text Embeddings

Our initial experiments involved using various text em-
beddings specifically relevant to our problem statement. We
focused on Clinical Bert and BioBert, which are special-
ized adaptations of the BERT (Bidirectional Encoder Rep-
resentations from Transformers) model, designed for dis-
tinct applications in the biomedical and clinical domains.
These models yielded superior results, as evidenced by the
data presented in the table [2]. The tailored nature of Clini-
cal Bert and BioBert, with their training on domain-specific
texts, enabled them to perform more effectively in our con-
text than the general BERT model.

4.2. Weighted Dice Loss with Focal Loss Elements

This custom loss function, WeightedDiceLoss, in-
tegrates aspects from both the Dice Loss and the Focal Loss
to handle class imbalance during segmentation training.

Key Variables:

1. alpha: Controls the contribution of the Focal Loss,
assisting in managing class imbalance.

2. gamma: Shapes the loss curve, directing the model’s
focus toward challenging examples.

3. weights: Assigns significance to different classes,
balancing their impact on loss computation.

Functionality:

1. Usage: Takes model predictions (logit) and ground
truth labels (truth) as inputs.

2. Operation:

(a) Reshapes tensors for computations.
(b) Applies class weights to address the class imbal-

ance.
(c) Computes intersection, union, and the Dice coef-

ficient.
(d) Calculates Focal Loss based on the Dice coeffi-

cient.
(e) Derives the mean Focal Loss across the batch as

the final loss value.

We improved the Weighted Dice Loss by integrating Fo-
cal Loss, a variant of standard cross-entropy loss. This ad-
justs weights for accurately and inaccurately classified sam-
ples and effectively addresses class imbalance.

The formula for focal loss is shown below:

Focal Loss = α× (1− Pt)
γ × Dice Coefficient

The probability that the model predicts for the ground
truth object is denoted as Pt. The parameters α and γ
represent the weights and the curve’s shape, respectively.
γ governs the loss curve’s shape; higher values decrease
the loss for well-classified examples, extending the range
of low loss. When γ = 0, the equation mirrors Cross
Entropy Loss. α addresses class imbalance by assigning
higher weights to rare classes and lower weights to domi-
nant or common classes.

This loss function provides a balanced approach to tackle
class imbalance during segmentation training. Fine-tuning
alpha, gamma, and weights allows customization
based on dataset specifics and class importance, thereby
aiding in enhancing model performance.



5. Results
We utilized the Dice coefficient to quantitatively eval-

uate our vision transformer model’s accuracy and precision
in performing semantic segmentation on medical images. In
addition to this we used the Intersection over Union (IOU)
to measure the overlap between predicted and ground truth
regions. We used Focal loss to ameliorate the problem of
class imbalance in the data. Furthermore, we conducted
an ablation study to evaluate the performance of our vision
transformer model. This assessment involved the use of 2
multimodal medical image segmentation datasets, incorpo-
rating CT images and X-rays from well-established sources
such as QaTa-COV19 and MonuSeg, which are widely rec-
ognized datasets in the field of medical imaging.

In our experiments with the MoNuSeg dataset utiliz-
ing BERT-based-uncased text embeddings, employing Fo-
cal Loss instead of Binary Cross-Entropy (BCE) resulted in
modest improvements. The use of Focal Loss demonstrated
a slight enhancement, achieving 79.18% Dice and 65.92%
IoU.

Our findings exhibit enhanced accuracy over baseline
models like U-Net and LAVT. However, we have yet to
attain parity with the current state-of-the-art model in our
domain.

Dataset Text Embedding Loss Dice (%) iOU(%)

MonuSeg Bert BCE 79.03 65.53
MonuSeg Bert Focal Loss 79.18 65.92

In our experimentation with the QaTa-Cov19 dataset, we
observed diverse performance metrics corresponding to dif-
ferent text embeddings. Notably, the utilization of Clini-
calBERT yielded the most promising outcomes, achieving
82.25% Dice and 73.19% IoU. Our model’s performance
exhibited improvement upon employing these text embed-
dings, surpassing established architectures designed for lan-
guage and vision data—specifically, U-NET, U-NET++,
ConVIRT, and LAVT.

Dataset Text Embedding Dice (%) iOU (%)

QaTa-COV19 Bert-base-uncased 81.70 72.89
QaTa-COV19 Biobert 81.98 73.04
QaTa-COV19 Clinicalbert 82.25 73.19

Here is a link to the GitHub repository: Github Repo
Link
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